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~ EU Plan to Scan Private Messages for Child
~ Abuse Images Puts Encryption at Risk

1 month ago
At a Glance \
Apple recently revealed its deep perceptual

hashing system NeuralHash to detect child sexual
abuse material (CSAM) on user devices before files
are uploaded to its iCloud service

Investigation of the technical vulnerabilities of

client-side scanning based on deep perceptual

hashing from a machine learning perspective.

> Investigation of Apple‘s NeuralHash as a use
case for client-side scanning systemes.

» Innocent users could be framed with hash
collision attacks.

» A simple image editor is sufficient to avoid
detection by the system

= NeuralHash and related deep perceptual client-
side scanning systems are not robust and do not
provide a safe method for crime detection on user

@ices. /

Deep Perceptual Hashing — A Safe Way for Crime Detection?

Neural Network-based hashing algorithms compute similar hash values (fingerprints) for visually
similar inputs. Hashes are compared to a database with hashes from known illegal material.
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Goal: The attacker manipulates benign images so that the hash assigned to them matches a hash
from the CSAM database to force a false-positive detection by the system.
Results: Hash collisions could be forced in >90% of all evaluated cases. Visual differences

between the benign and the manipulated images are hard to spot in most cases.
_Original ~Manipulated Difference

Goal: The adversary manipulates images with malicious content, such as CSAM, to avoid
detection. Manipulations are either fine-tuned perturbations or standard image transformations.
Results: NeuralHash is not robust against simple fine-tuned perturbations — changing a few
pixels is sufficient to avoid detection. Moreover, using a simple image editor to slightly rotate,
crop or mirror an image already leads to strong hash changes.
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Lessons and Implications

Current systems are not robust!
Simple image manipulations are sufficient

_ to avoid detection.
No deep technical knowledge required.

System misuse for malicious purposes!
@Framing or monitoring of innocent users
¢ with hash collision attacks is possible.
@Governments or organizations with
¢ control over the system might extend the

database with additional, non-criminal
content for surveillance.
W) NeuralHash and related deep

perceptual client-side scanning systems
should not be deployed on user devices
in their current form!

| Systems are easy to manipulate, pose a
risk of misuse, and lack robustness.

| No safe method for legal violation

K detection. /
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