

TECHNISCHE UNIVERSITÄT DARMSTADT

Technical University of Darmstadt, Germany

At a Glance

Model inversion attacks (MIAs) aim to create synthetic images that reflect the class-wise characteristics from a target classifier's private training data by exploiting the model's learned knowledge.

We introduce several novelties to make MIAs robust and flexible:

- () Loosening the connection between GANs and targets to flexibly exchange both components and even allow the use of pre-trained GANs.
- Stabilizing optimization by random transformations to facilitate extraction of sensitive features.
- () Moving optimization to hyperbolic spaces to avoid vanishing gradients and poor local minima.
- Selecting meaningful attack results based on a novel robustness-based selection process.

Overcoming Vanishing Gradients

How to avoid vanishing gradients and support characteristic feature extraction?

Solution: We move the optimization to hyperbolic, non-Euclidean spaces and use the Poincaré distance to guide the attack:

$$\mathcal{L} = \operatorname{arccosh}\left(1 + \frac{2 \|u - v\|_2^2}{(1 - \|u\|_2^2)(1 - \|v\|_2^2)}\right)$$

We set u to be the normalized output logits u = $\frac{v}{1}$ and v as the one-hot encoded target vector, $\|0\|_{1}$ replacing the 1 by 0.9999.

Increasing Flexibility

How to make attacks less time- and resourceconsuming and more flexible?

Solution: We developed our approach with the use of pre-trained GANs in mind:

Generator from the same domain as the target distribution is sufficient to perform the attacks. Usage of publicly available models, such as StyleGAN2 or BigGAN, is possible.

Sample Selection

How to select meaningful attack results?

Solution: We select the results with the most robust prediction scores on the target model M_{target} under strong transformations T(x):

$$E[M_{target}(T(x)) \approx \frac{1}{N} \sum_{i=1}^{N} M_{target}(T(x))_{c}$$

Training Samples Good Results

Increasing Robustness

How to avoid the generation of misleading features and overcome distributional shifts? Solution: We apply (random) image transformations

- on the GAN outputs in each optimization step to Adjust images to the target distribution.
- Reduce risk of misleading images. 3.
 - Support extraction of characteristic features for targeted classes.

Qualitative Results

Qualitative results of *Plug & Play Attacks* performed with **publicly** available, pre-trained **StyleGAN2** models (FFHQ, MetFaces and AFHQ Dogs) against ResNeSt-101 models trained on FaceScrub, CelebA and Stanford Dogs.

Stabilize the optimization process.

Comparison To Existing Attacks

Our Plug & Play Attacks significantly outperform previous approaches.

GMI (Zha KED (Che VMI (Wai Plug and

Code: <u>https://github.com/LukasStruppek/</u> Plug-and-Play-Attacks

	↑ Acc@1	$\downarrow \delta_{face}$	↓FID
ang et al., CVPR 2020)	13.11%	1.2600	77.80
en et al., ICCV 2021)	05.72%	1.4366	207.11
ng et al., NeurIPS 2021)	61.63%	0.9545	63.27
Play Attacks (Ours)	88.46%	0.7441	41.73
		60.6	

Cur proposed Plug and Play Attacks are a novel **state-of-the-art** model inversion attack. under strong **distributional** shifts between GAN and target distributions. Can make use of **publicly available GANs**, so no additional training or data is required. **Reduce risk** of generating misleading or fooling attack results.

Contact: Lukas Struppek Technical University of Darmstadt lukas.struppek@cs.tu-darmstadt.de <u>@LukasStruppek</u>