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What are Membership Inference Attacks (MIAs)?
Given datapoint x and model M trained on dataset D, the attacker 
tries to answer the following question:

Was x part of the training dataset D?
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1) Score-based MIAs Are Not Robust!
Results: MIAs have high false-positive rates on samples from the 
same and different data distributions.
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Samples from other distributions with similar content might be in 
the images the attacker wants to infer membership for.
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3) Mitigating Overconfidence Increases Privacy Risks
Results:
• Label Smoothing (Müller et al., ’19) and LLLA (Kristiadi et al., ‘20) 

reduce the FPR of MIA attacks 
• Lower FPR è Higher Privacy Risks

ResNet-50 Label 
Smoothing

ResNet-50 Label Smoothing

4) Tradeoff between Calibration and Defenses
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Results: Defenses have contrary effects to 
calibration. Calibration separates the distributions 
while defenses align them.

2) High Prediction Scores, Lower Privacy Risks

Results:
• The Mean Maximum Prediction Scores (MMPS) indicate that 

score-based MIAs rely primarily on the max. prediction score.
• Overconfidence causes high false-positive rates which implicitly 

protects the training data. 

Conclusion

• MIAs have high false-positive rates

• Overconfidence causes high false-positive rates

• Calibration increases privacy risks

• Defenses are contrary to calibration
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Code

https://github.com/ml-research/To-Trust-or-Not-
To-Trust-Prediction-Scores-for-Membership-
Inference-Attacks


