Publications

2024

  1. 24_icml_workshop.png
    Finding NeMo: Localizing Neurons Responsible For Memorization in Diffusion Models
    Dominik Hintersdorf*Lukas Struppek*, Kristian Kersting, Adam Dziedzic, and Franziska Boenisch
    In Conference on Neural Information Processing Systems (NeurIPS), 2024
  2. 24_iclr.png
    Be Careful What You Smooth For: Label Smoothing Can Be a Privacy Shield but Also a Catalyst for Model Inversion Attacks
    Lukas Struppek, Dominik Hintersdorf, and Kristian Kersting
    In International Conference on Learning Representations (ICLR), 2024
  3. 24_iclr_workshop.png
    Exploring the Adversarial Capabilities of Large Language Models
    Lukas Struppek, Minh Hieu Le, Dominik Hintersdorf, and Kristian Kersting
    International Conference on Learning Representations (ICLR) - Workshop on Secure and Trustworthy Large Language Models, 2024
  4. 24_icml_workshop.png
    Finding NeMo: Localizing Neurons Responsible For Memorization in Diffusion Models
    Lukas Struppek*, Dominik Hintersdorf*, Kristian Kersting, Adam Dziedzic, and Franziska Boenisch
    In International Conference on Machine Learning (ICML) - Workshop on Foundation Models in the Wild, 2024
  5. 24_ecai.png
    Defending Our Privacy With Backdoors
    Dominik Hintersdorf, Lukas Struppek, Daniel Neider, and Kristian Kersting
    In European Conference of Artificial Intelligence (ECAI), 2024
  6. 24_jair.png
    Does CLIP Know My Face?
    Dominik Hintersdorf, Lukas Struppek, Manuel Brack, Felix Friedrich, Patrick Schramowski, and Kristian Kersting
    Journal of Artificial Intelligence Research (JAIR), 2024
  7. 24_ecis.png
    CollaFuse: Navigating Limited Resources and Privacy in Collaborative Generative AI
    Domenique Zipperling, Simeon Allmendinger, Lukas Struppek, and Niklas Kühl
    In European Conference on Information Systems (ECIS), 2024
  8. 24_ethics.png
    Fair Diffusion: Auditing and Instructing Text-to-Image Generation Models on Fairness
    Felix Friedrich, Manuel Brack, Lukas Struppek, Dominik Hintersdorf, Patrick Schramowski, Sasha Luccioni, and Kristian Kersting
    AI and Ethics , 2024
  9. 24_social.png
    Evaluating the Social Impact of Generative AI Systems in Systems and Society
    Irene Solaiman, Zeerak Talat, William Agnew, Lama Ahmad, Dylan Baker, Su Lin Blodgett, Canyu Chen, Hal Daumé III, Jesse Dodge, Isabella Duan, and 21 more authors
    arXiv preprint, 2024
  10. 24_collafuse.png
    CollaFuse: Collaborative Diffusion Models
    Simeon Allmendinger, Domenique Zipperling, Lukas Struppek, and Niklas Kühl
    arXiv preprint, 2024
  11. 23_aisola.png
    Balancing Transparency and Risk: An Overview of the Security and Privacy Risks of Open-Source Machine Learning Models
    Dominik Hintersdorf*Lukas Struppek*, and Kristian Kersting
    In Bridging the Gap Between AI and Reality, 2024
  12. 23_caia.png
    Class Attribute Inference Attacks: Inferring Sensitive Class Information by Diffusion-Based Attribute Manipulations
    Lukas Struppek, Dominik Hintersdorf, Felix Friedrich, Manuel Brack, Patrick Schramowski, and Kristian Kersting
    In Conference on Neural Information Processing Systems (NeurIPS) Workshop on New Frontiers in Adversarial Machine Learning, 2024

2023

  1. 23_jair.png
    Exploiting Cultural Biases via Homoglyphs in Text-to-Image Synthesis
    Lukas Struppek, Dominik Hintersdorf, Felix Friedrich, Manuel Brack, Patrick Schramowski, and Kristian Kersting
    Journal of Artificial Intelligence Research (JAIR), 2023
  2. 23_iccv.png
    Rickrolling the Artist: Injecting Backdoors into Text Encoders for Text-to-Image Synthesis
    Lukas Struppek, Dominik Hintersdorf, and Kristian Kersting
    In International Conference on Computer Vision (ICCV), 2023
  3. 23_neurips_workshop.png
    Leveraging Diffusion-Based Image Variations for Robust Training on Poisoned Data
    Lukas Struppek*, Martin B. Hentschel*, Clifton Poth*, Dominik Hintersdorf, and Kristian Kersting
    Neural Information Processing Systems (NeurIPS) - Workshop on Backdoors in Deep Learning: The Good, the Bad, and the Ugly, 2023
  4. 23_neurips.png
    SEGA: Instructing Text-to-Image Models using Semantic Guidance
    Manuel Brack, Felix Friedrich, Dominik Hintersdorf, Lukas Struppek, Patrick Schramowski, and Kristian Kersting
    In Conference on Neural Information Processing Systems (NeurIPS), 2023
  5. 23_dfrws.png
    Combining AI and AM – Improving Approximate Matching through Transformer Networks
    Frieder Uhlig*Lukas Struppek*, Dominik Hintersdorf*, Thomas Göbel, Harald Baier, and Kristian Kersting
    In Annual DFRWS USA Conference, 2023
  6. 23_ijcnn.png
    Sparsely-Gated MoE Layers for CNN Interpretability
    Svetlana Pavlitskaya, Christian Hubschneider, Lukas Struppek, and J. Marius Zöllner
    In International Joint Conference on Neural Networks (IJCNN), 2023

2022

  1. 22_icml.png
    Plug & Play Attacks: Towards Robust and Flexible Model Inversion Attacks
    Lukas Struppek, Dominik Hintersdorf, Antonio De Almeida Correia, Antonia Adler, and Kristian Kersting
    In International Conference on Machine Learning (ICML), 2022
  2. 22_facct.png
    Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash
    Lukas Struppek*, Dominik Hintersdorf*, Daniel Neider, and Kristian Kersting
    In ACM Conference on Fairness, Accountability, and Transparency (FAccT), 2022
  3. 22_ijcai.png
    To Trust or Not To Trust Prediction Scores for Membership Inference Attacks
    Dominik Hintersdorf*Lukas Struppek*, and Kristian Kersting
    In International Joint Conference on Artificial Intelligence (IJCAI) , 2022
  4. 22_conpro.png
    Investigating the Risks of Client-Side Scanning for the Use Case NeuralHash
    Dominik Hintersdorf*Lukas Struppek*, Daniel Neider, and Kristian Kersting
    In Working Notes of the 6th Workshop on Technology and Consumer Protection (ConPro) @ 43th IEEE Symposium on Security and Privacy, 2022